Research On GameSpy
Protocol

Arves100, xiaojiuwo

First Edition

December 30, 2020

8% 2,

r

,
g

Nt Research on GameSpy protocol
Contents

II Introductiod 6

|1 History of GameSpy{ 7

|'2 Related Works{ 8

III General Informatiod 9

B SDK Moduld 11

k GameSpy Back-end Servers{ 12

b Access Sequence of The Cliend 13

15

15

IIII GameSpy Presence & Messaginé 17

|Z Common InformatiodS 19

.1 Server IP and Port§ 19

EGameng Presence Connection Managetl 20

8.1 Request Command of GameSpy Presence Connection Managerl .20

R.2 GPI Connect Modulq 21

821 Lo . . . oo 21

82.2 SDK Revision« o v v oooe e 24

B.3 GPLBuddy Moduld 25

R.3.1

Page 1

8.3.1.3 Request| 28
8.3.1.4 Auth 28
8315 Revokdo 28
8.3.1.6 Statud 29
R.3.1.7 Invitd 29
83.1.8 PINGo oo 29
8.3.1.9 PONQ 30

Powered by Retrosoy &

F8
g Research on GameSpy protocol
8.3.2 Buddy Status Infd 30
8.3.3 Buddy List| 31
8.3.4 Block List], 31
835 Add Buddyl 31
8.3.6 Delete Buddy] 32
8.3.7 Add Blocq 33
B.4 GPI Info Moduld 33
BA41 Profild 33
8.4.1.1 _Get Profile Information| 33
8.4.1.2 Update Profile Informationf 34
8.4.1.3 Update User Information 34
B.4.2 GPIProfile Moduld 35
8.4.2.1 Create New Proﬁld 35
8.4.2.2 Replace Existed Profild 35
8.4.2.3 _Delete Profild 35
B.4.3 GPIUnique Moduld 36
8.4.3.1 Register Unique Nickl 36
8.4.3.2 Register CDKeyl. 36
844 GPIPeer Moduld 36
8.4.5 GPI Transfer Modulel 36
GameSpy Presence Search Playe 37
.1 Search Profild 37
0.1.1 Seach Profile With Unique Nickl 38
0.1.2 Search User Is Valid 38
0.1.3 Search Nickl 39
0.1.4 Search Plaverl 39
0.1.5_ Search Checl 40
0.1.6 User Creatiod 40
0.1.7 Search Others Buddyl 40
0.1.8 Search Others Buddy Listl 41
0.1.9 Search Suggest Uniqud 41
0.1.10 Valid Email 42
IIV Transpord 43
|V NAT Negotatiod 44
0 Introductio 45
0.1 NetNag Packetl 48
10.1.1 MagicDatal 49
10.1.2 NatNeg Packet TXRé 49
10.1.3 Initial Packetl 50
........................ 50
........................ 50
....................... 51
....................... 51
........................ 51
Page 2 m"’mﬁﬁ'ﬂfﬂx g

8% 2,

r

/
g

ol Research on GameSpy protocol

10.2.2.1 Initial NatNego 51

|VI Peer to Peer communicatiod 52
|11 Peer to Query Report Serveli 53
|12 Peer to Server Browser Serve1| 54
|VII Patching & Trackingl 55
|VIII Query & Reportind 56
113 Avaliable Check 58
IliGame Server Information Regord 60
14.1 General Information 60
14.2 Pre-Query IP Verify Packet| 62

14.3 Query Packet] 63
14.4 Heart Beat Packet| 63
14.5 Challenge Packetl 64
14.6 Echo Packeﬂ 64

14.7 AddError Packet| 64

15 The Process of CD key or Nat Ne

65
IIX Server Browsel{ 66

67

IuServer List Retrievé 68
17.1 Keys List] 70

17.4.1 Push Kevs Listl . . . o o oo oo 72
17.4.2 Push Server] 72
17.4.3 Keep Aliva 72
72
72
73

18 Server Info 74

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 3

8% 2,

r

/
3 s

Research on GameSpy protocol

|X SAKE Persistent Storagel

IXI ATLAS Competition

|XII Voice Chad

|XIII Web Authenticatiod

|XIV GameSpy Status & Trackind

0.2 Authenticate Plavell

0.2.1 Authenticate Plaver With Partner Informatiod

0.2.2 Authenticate Player With Presence Connection Managerl .

0.2.3 Auth

enticate Player With CD Key Hash

0.3 Get Profileid

0.4 Get Plaver Datéi

0.5 New Gamd

0.6 Set Persist Data Helped

0.7 Update Game Snapshotf

2.4 Command Parameters

2.5 Tailing Format]

|A Login Proof Ch

allenge Generation Algorithrd

Page 4

Powered by RetroSpy
Bringing deprecated

‘games back to life

75
76
77
78

79

80
80
80
81
81
81

82
82
83
83
83
84
84
85
85
86
86

87
87
87

88

89
89
89
90
90
91
92
92

93

2

Research on GameSpy protocol

IB Gstats Initial Encryptior‘

b CDKey Server Initial Encryptiod

ID GameSpy Secret Keyl

Page 5

Powered
Bringing

by RetroSpy

‘games back to life

94
95

96

2

Nl Research on GameSpy protocol

Part 1

Introduction

Powered by Retro$
yRetosey &

Page 6 S e o

N Research on GameSpy protocol

Chapter 1

History of GameSpy

P ed b
Page 7 Powered by Retrosey &

N Research on GameSpy protocol

Chapter 2

Related Works

Powered by Retro$p:

Page 8 Pttt b4 3

Ny Research on GameSpy protocol

Part 11

General Information

P ed b
Page 9 Powered by Retrosey &

oo,

N Research on GameSpy protocol

In this chapter we describe the structure of GameSpy SDK and GameSpy
servers.

Page 10 Powered by Retrosoy &

Research on GameSpy protocol

Chapter 3

SDK Module

GameSpy SDK contains of 16 modules.

Brigades

Chat

Presence & Messaging
CDKey

Stats & Tracking
Persistent Storage
Transport

NAT Negotation

Peer to Peer communication
Patching & Tracking
Server Browser

Query & Reporting
SAKE Persistent Storage
ATLAS Competition
Voice Chat

Web Authentication

Page 11

Powered by Retrospy §8

Bringing deprecated games back to life

Nl Research on GameSpy protocol

Chapter 4

GameSpy Back-end Servers

GameSpy back-end servers are list as follows.
o GameSpy Presence Connection Manager (GPCM)
o GameSpy Presence Search Player(GPSP)
o GameSpy Query and Report (QR)
o GameSpy Server Browser (SB)
o GameSpy Stats & Tracking (GStats)
e GameSpy Chat
o GameSpy NAT Negotation (NatNeg)
e GameSpy CDKey
e GameSpy Web Services
o GameSpy SAKE Storage (SAKE)

Powered by Retrospy §8

Page 12 S et o et b

oo,

3 Research on GameSpy protocol

Chapter 5

Access Sequence of The
Client

If a user want to use GameSpy service, the access sequence is listed in Figure @
and we describe the detail below.

Game Server

GPCM GPSP QR

©)

CDKey Client

®

/
® O] o
K

CHAT GSTATS ‘WebServer

Figure 5.1: The access sequence of client

Page 13 Powered by Retrosoy &

359 2,
",
& 3

Research on GameSpy protocol

‘ Client ” GPCM ” GPSP ” CDKey ” CHAT ” QR ” SB ”GSTATS I ‘ \VebServerI

Figure 5.2: Login diagram

Explanation of access sequence

1.

- W

Client checks in QR server, which tells client GameSpy back-end server
status.

Client accesses GPCM or GPSP to check their account and login.
Client accesses to CDKey to verify his cd-key in login phase.
Client logins to Chat server.

Client retrieves player data(level, exp, etc.) from GStats(old game use
this server to store player data, new game use Web Server to store player
data).

When a game server is launched it will send heartbeat to QR server to
tell QR its information.

Client accesses to SB to search online game server.
Client logins to game server with his information and cd-key.

Game server will check his cd-key by accessing to CDKey server, after
every information is verified, client should be able to play their game.

Powered by Retrospy §8

Page 14 S et o et b

g Research on GameSpy protocol

Chapter 6

Basic Description of
Protocol

In this part, we describe some of the basic patterns that are used in all GameSpy
servers.

6.1 String Pattern

We first introduce the pattern of the string, which is used to make up a request
and response. The following servers do use the pattern: Presence Connec-
tion Manager, Presence Search Player, GameSpy Status and Tracking, CD-Key,
Query Report(version 1) This kind of string represents a value in a request and
response sent by the client or the server as Table [.1l.

String Description
\key\value\ | The key is key, the value of the key is value

Table 6.1: String pattern

There are two kind of patterns the first one is value string, the second one is
command string. Value String This kind of string represents a key value pair
in the request or response string, it has a key and a correspond value as shown
in Table(@

String Description
\pid\13\ The key is pid, the value of the pid is 13
\userid\0\ | The key is userid, the value of the userid is 0

Table 6.2: Value string

Command String

This kind of string represents a command in a request sends by the client or
the server as Table (.. The command will end with \\ or \ depends on whether
run at the server-side or client-side.

Powered by Retrospy §8

Page 15 S et o et b

Nold Research on GameSpy protocol

String Description
\command\\ | This is a command

Table 6.3: Command string

Powered by RetroSpy #

Page 16 S et o et b

Ny Research on GameSpy protocol

Part 111

GameSpy Presence &
Messaging

Powered by Retro$
yRewosey &

Page 17 v et s e

oo,

N Research on GameSpy protocol

Presence & Messaging system allows a game to add account authentication or
registration, which includes a profile where personal information could be stored
(such as email, first name), a friend list (called buddies), private messages.

GameSpy Presence contains two servers, GameSpy Presence Connection
Manager (GPCM) and GameSpy Presence Search Player (GPSP). GPCM is
a server that manages the profiles (such as login, storing the profile informa-
tion).

Page 18 Powered by Retrosoy &

N Research on GameSpy protocol

Chapter 7

Common Information

In this section we describe the common information, methods, techniques that
GPCM and GPSP have.

7.1 Server IP and Ports

Table @ are the IP and Ports of GPCM and GPSP that client or game connect
to.

Name 1P Port
GPCM | gpcm.gamespy.com | 29900 (tcp)
GPSP | gpsp.gamespy.com | 29901 (tcp)

Table 7.1: IP and Ports for GameSpy Presence Servers

Page 19 Powered by Retrosoy &

Research on GameSpy protocol

Chapter 8

GameSpy Presence
Connection Manager

8.1 Request Command of GameSpy Presence Con-
nection Manager

Table @ lists the request (known by us) that clients send to GameSpy Presence
Connection Manager server (GPCM).

Commands Description
inviteto Invite friends
login Login to GPCM
getprofile Get the profile of a player (including your own)
addbuddy Add a player to my friend list
delbuddy Delete a player from my friend list
updateui Update login information (email, password)
updatepro Update my profile such as first name, last name,
gender etc.
logout Logout manually by user

Update the status of a user (Such as what game is

status the player playing)
ka Keep client or session alive
bm Message command
blk Block list
bdy Friend list
1t Login ticket

Table 8.1: Request For GameSpy Presence Connection Manager

Error response string for (GPCM, GPSP):

\error\\err\ < errorcode >\ fatal\\errmsg\ < errormessage > \id\1\ final\
(8.1)

Page 20 Powered by RetroSpy &8

Bringing deprecated games back to life

oo,

P
oy’

N Research on GameSpy protocol

8.2 GPI Connect Module

8.2.1 Login
We show the login communication diagram in Fig @
Client GPCM
Connect o
Send challenge E
Send challenge response
Accept/reject ﬂ

Figure 8.1: Login diagram

Server initial Challenge:

When a client is connected to GPCM server, GPCM Server will send a challenge
to client. The challenge string shows in 8.2.1f and B.2.9. However we do not know
the correct functionality of @

Code 8.2.1

\lc\1\challenge\ <challenge string>\final\

Code 8.2.2

\lc\1\challenge\<challenge string>\nur\\userid\ <user id>
\profileid\ <profile id>\final\

o challenge: The challenge string sent by GPCM.

Keys Description Type
challenge The challenge string sended by GameSpy String
Presence server
nur ? Create new user delimiter
userid The userID of the profile Uint
profileid The profileID Uint

Table 8.2: The first type login response

Client Login Request:

There are three ways of login:

e AuthToken: Logging using an alphanumeric string that represents an user.

Powered by RetroSpy
Page 21 S et o et b #

N Research on GameSpy protocol

e UniqueNick: Logging using a nickname that is unique from all the players.
e User: Logging with nickname, email and password.

We show the common part of login request in

Code 8.2.3

\login\ \challenge\ <challenge string>\x\userid\ <user id>
\profileid\ <profile id>\partnerid\ <partner id>

\response\ <challenge response string>\firewall\ <firewall flag>
\port\ <port>\productid\<product id>\gamename\<game name>
\sdkrevision\ <sdk revision number>\quiet\<quiet mode flag>
\id\ <operation id>\final\

Where the value of x in depending on which login method user is using.

\authtoken\ <authentication token>\
\uniquenick\ <uniquenick name>\
\user\ <nick name+@+-email>\

Page 22 Powered by Retrosoy &

oo,

Research on GameSpy protocol

Keys Description Type
. The login command which use to identify the
login . .
login request of client
The user challenge used to verify the
challenge authenticitir of the client Y See @
authtoken The token used to login (represent of an user) | String
uniquenick The unique nickname used to login String
user The users account (format is String
NICKNAMEQEMAIL)
userid User id Uint
profileid Profile id Uint
This ID is used to identify a backend service
logged with gamespy.(Nintendo WIFI
partnerid Connection will identify his partner as 11, Uint
which means that for gamespy, you are
logging from a third party connection)
response The client challenge used to verify the String
authenticity of the client
If this option is set to 1, then you are
firewall connecting under a firewall/limited Uint
connection
port The peer port (used for p2p stuff) Uint
productid An ID that identify the game you’re using Uint
A string that rapresents the game that you're
gamename using, used also for several activities like string
peerchat server identification
namespaceid Distinguish same nickname player Uint
sdkrevision The version of the SDK you're using Uint
quiet quite flag mode used in status buddy info Uint
.3.2
It The login ticket used for login into SAKE St;15ng
id The operation number Uint

Table 8.3: Login parameter string

Server respomnse:

When received client’s login request, server check the challenge and proof.
if client pass the check, server will first send response‘ and then it will send
friend list friend status, message, add friend request.

Code 8.2.5

\lc\2\sesskey\ <session key>\userid\<user id>\uniquenick\<unique
nick>\1t\ <login ticket>\<challenge proof>\final\

Page 23

Bringing deprecated games back to life

Powered by RetroSpy g

Nl Research on GameSpy protocol

Keys Description Type

. The session key, which is a integer .
sesskey rapresentating the client connection Uint
userid The userID of the profile Uint
profileid The profileID Uint
uniquenick The logged in unique nick String
It The login ticket, unknown usage String
proof The proof is somethmg similar to the String

response but it vary

Table 8.4: The second type login response
Proof in 8.4 generation: md5(password)||48spaces The user could be Au-

thToken or the User/UniqueNick (with the extra PartnerID). server challenge
that we received before. the client challenge that was generated before.

8.2.2 SDK Revision

Client GPCM

Login

,,,,,,,,,,,, S@C,C?S,S,,,,,,,,,,,E
Check SDK version
Send buddy message ¢

Send buddy revoke

Send buddy request

Send buddy status info/buddy status
Send buddy list
Send block list

Figure 8.2: SDK Revision process

When a player finished login, GPCM will check his sdkrevision, sdkrevision is
an addition of each sdkrevision number. Every addition of sdkrevision number
will make GPCM act differently.

Page 24 Powered by Retrospy §8

Bringing deprecated games back to life

N Research on GameSpy protocol

o Extended message support

— 1 GPI_NEW_AUTH_NOTIFICATION =1
— 2 GPI_NEW_REVOKE_NOTIFICATION = 2

e New Status Info support
— 4 define GPI_NEW__ STATUS_NOTIFICATION = 4

e Buddy List + Block List retrieval on login
— 8 GPI_NEW_LIST RETRIEVAL ON_LOGIN = 8§

o Remote Auth logins now return namespaceid/partnerid on login
— 16 GPI_REMOTEAUTH_ IDS NOTIFICATION = 16

e« New CD Key registration style as opposed to using product ids
— 32 GPI_NEW_CDKEY REGISTRATION = 32

For now, we know the sdkrevision number of GameSpy SDK test and Crysis2.

8.3 GPI Buddy Module

8.3.1 Buddy Message

The Buddy Message is a method to transmit message, buddy add request, game
invite, friend revoke(friend deletion), buddy status(online status etc.).

Powered by RetroSpy
Page 25 S et o et b @

Research on GameSpy protocol

— UTM

Revoke <~ — Message

Invite Buddy Message Request
Ping 1 — Status
Pong ~— — Auth

Figure 8.3: Buddy message module

When a Buddy Message received by a client, the client will determine Buddy
Message type according to Table @

Page 26

Definition Value
GPI_BM_MESSAGE 1
GPI_BM_REQUEST 2
GPI_BM_REPLY 3
GPI_BM_ AUTH 4
GPI_BM_UTM 5
GPI_BM_ REVOKE 6
GPI_BM_ STATUS 100
GPI_BM_INVITE 101
GPI_BM_ PING 102
GPI_BM_PONG 103
GPI_BM_KEYS_ REQUEST 104
GPI_BM_KEYS REPLY 105
GPI_BM_FILE_SEND_REQUEST 200
GPI_BM_FILE SEND REPLY 201
GPI_BM_FILE BEGIN 202
GPI_BM_FILE END 203
GPI_BM_ FILE DATA 204
GPI_BM_ FILE SKIP 205
GPI_BM_ FILE TRANSFER THROTTLE | 206
GPI_BM_FILE TRANSFER_ CANCEL 207
GPI_BM_ FILE TRANSFER KEEPALIVE | 208

Table 8.5: Buddy Message Definition

Powered by RetroSpy

Bringing deprecated games back to life

2

oo,

N Research on GameSpy protocol

Because Clientl and Client2 are in NAT network, so they can not connect
each other using p2p, so GPCM will forward message for them. The forward

diagram shows in Figure

Clientl GPCM Client2

Send buddy message

Forward buddy message

]

Figure 8.4: Buddy message diagram

All Buddy Message from Client will have same prefix which we show in

Client request:

\bm\ <buddy message type>\sesskey\<session key>
\t\<profile id>\date\ <date>\- - - \final\

Keys Description Type
bm Indicate the buddy mefﬁe command, please Uint
see

t Profileid of the receiver Uint
sesskey The session key of the sender client Uint
msg The message contents String

Table 8.6: Client buddy message command in prefix

>

\ll Buddy Message from GPCM will have same prefix which we show in
‘. The contents in - - - is different from each Buddy Message Type.

Server response:

\bm\ <buddy message type>\f\<profile id>\date\<date>\- - - \final\

Powered by RetroSpy g

Bringing deprecated games back to life

Page 27

N Research on GameSpy protocol

Keys Description Type

b Indicate the buddy mefﬁe command, please Uint

see
f Profileid of the sender Uint
The date that this message is sent, this value
date can be empty, possible format should be Uint
rrrxrrrr e.g. 20200201

msg The message contents String

Table 8.7: Buddy message command in prefix
Next following subsections we introduce message contents, the message con-
tent will use in both client buddy message and server buddy message. We only

write the message contents after \msg\.

8.3.1.1 Message

This is a general message

\msg\ <message content>\final\

8.3.1.2 UTM

\msg\<UTM message>\final\

8.3.1.3 Request
This is a add friend request.

Server respomnse:

\msg)\ |signed|<signature>\final\

8.3.1.4 Auth

Auth method is a add friend function. Auth method do not have contents after
\date\.

8.3.1.5 Revoke

Revoke method is called when a client1 deleted a client2 in his friend list. When
deletion is finished in client1, client1 will send revoke message to GPCM, GPCM
will forward this message to client2, then client2 will delete playerl in his friend
list. Revoke method do not have contents after \date\.

Powered by RetroSpy
Page 28 S et o et b #

oy Research on GameSpy protocol

8.3.1.6 Status

This is an old method for game to get status information. buddy status
and buddy status info @can not be used at same time. Buddy status method
is a part of Buddy Message module, old game send buddy status through a
buddy message.

Server respomnse:

\msg\ |s|<status code>|ss|<status string>|ls|<location string>
lip|<ip address>|p|<port>|qm|<quiet mode flag>\final\

8.3.1.7 Invite

Invite method is used to invite a player to a game which is currently playing by
another player.

Client request:

\msg\ |p|<product id>|l|<location string>\final\

8.3.1.8 PING

Ping method maybe is used to check the ping to other player.

Client1 GPCM Client2

Send Ping request

A 4

Forward ping request

P
Send pong response D
P

Forward pong response

Figure 8.5: PING and PONG diagram

Client request:

\msg\ \final\

Powered by RetroSpy
Page 29 S et o et b #

oo,

N Research on GameSpy protocol

8.3.1.9 PONG

Server response:

\msg\1\final\

8.3.2 Buddy Status Info

This is a new method used in new game. is an old method used in old
game. Currently we can not tell you which game use new method and which
use old method.

Server respomnse:

Code 8.3.10

\bsi\ \state\ <buddy status>\profile\ <profileid>\bip\<buddy ip>
\bport\<buddy port>\hostip\<host ip>\hprivip\ <host private ip>
\gport\<query port>\hport\<host port>\sessflags\ <session flags>
\rstatus\<rich status>\gameType\<game type>\gameVnt\<game
variant>\gameMn\ <game map name>\product\<productid>
\gmodeflags\ <quiet mode flags>\final\

Keys Description Type
bsi buddy status info command
state Buddy status state Enum
profileid The profileID Uint
bip Buddy ip String
bport Buddy port Uint
hostip Host ip String
hprivip Host private ip String
qport Query port Uint
hport Host port Uint
sessflags Session flag Uint
rstatus Rich status ? String
gameType Game type String
gameVnt Game variant String
gameMn Game map name String
product Productid uint
gmodeflags Quiet mode flag Enum

Table 8.8: Buddy status info keys

Powered by RetroSpy

Page 30 v dercted s bt @

3920,

"~ hos

N Research on GameSpy protocol

8.3.3 Buddy List

Buddy list is a list which contains your friends. GPCM server will send buddy
list when a client is logged in. Process is showing in Fig and the response is
showing in B.3.3.

Client GPCM

D Send buddy list

Figure 8.6: Buddy List

Server respomnse:

\bdy\ <number of profileid>\list\ <profileid 1>,
<profileid 2>,-- -, <profileid n>\final\

8.3.4 Block List

Block list is an list which contain the players you do not like. GPCM server will
send block list when a client is logged in. Process is showing in Fig and the
response is showing in .-

Client GPCM

D Send block list

Figure 8.7: Block List

Server response:

\blk\ <number of profile id>\list\ <profileid 1>,<profileid 2>,-- -,
<profileid n>\final\

8.3.5 Add Buddy

When a client want to add another client into his buddy list. He will send the
following request to GPCM.

Powered by RetroSpy
Page 31 S et o et b #

3920,

"~ hos

N Research on GameSpy protocol

Client1 GPCM Client2

Send addbuddy request

Translate addbuddy to bm request

]

Figure 8.8: Add friend diagram

Client request:

\addbuddy \sesskey\ <session key>\newprofileid\ <profile id>
\reason\<add friend reason>\final\

8.3.6 Delete Buddy

When a client want to delete a friend in his buddy list. He will send the following
request to GPCM.

Clientl GPCM Client2

Send delbuddy request

Translate delbuddy to bm revoke

]

Figure 8.9: Delete friend diagram

Client request:

\delbuddy\ \sesskey\ <session key>\delprofileid\ <profile id>\final\

Powered by RetroSpy
Page 32 S et o et b #

oy Research on GameSpy protocol

8.3.7 Add Block

Client request:

\addblock \sesskey\ <session key>\profileid\ <profile id>\final\

8.4 GPI Info Module

8.4.1 Profile

8.4.1.1 Get Profile Information

Find a user’s profile information. signature string in response is used in adding
someone as your friend through buddy message.

Client request:

\getprofile\ \sesskey\ <session key> \profileid\ <profile id>
\id\ <operation id>\final\

Server respomnse:

\pi\ \profileid\ <profile id>\nick\<nick name>

\uniquenick\ <uniquenick>\email\ <email>\firstname\ <first name>
\lastname\ <last name>\icquin\<icquin>

\homepage\ <home page URL>\zipcode\<zip code>
\countrycode\ <country code>\lon\<longitude>\lat\<latitude>
\loc\ <location>\birthday\ <birthday>\sex\<gender>

\pmask\ <public mask>\aim\ <aim name>\pic\<picture>
\occ\<occupation id>\ind\<industry id>\inc\<income id>
\mar\<married id>\chc\<child count number>\il\<interest 1>
\ol\ <ownership 1>\conn\<connection type id>

\sig\ <peer to peer signature>\id\<operation id>\final\

Keys in profile module:

Powered by RetroSpy
Page 33 S et o et b #

e,

N Research on GameSpy protocol

Key Description
cpubrandid cpu barand id
cpuspeed cpu speed

memory memory
videocardlram GPU memory size
videocard2ram GPU memory size
connectionid connection id
connectionspeed | connection speed
hasnetwork unknow
passwordenc encrypted password

Table 8.9: Other keys in profile

8.4.1.2 Update Profile Information

Client GPCM

D Update profile request

Figure 8.10: Update profile diagram

Client request:

\updatepro) \sesskey\ <session key>\x\partnerid\<partner id>\final\

The x in is the profile information key and value pairs such as \nick\ <nick
name>\, etc.

8.4.1.3 Update User Information

Client GPCM

D Update user information request

Figure 8.11: Update user information diagram

Client request:

The * in ?? is the profile information key and value pairs such as \passwor-
denc\ <encrypted password>\, etc.

Powered by RetroSpy g

Page 34 S et o et b

N Research on GameSpy protocol

\updateui\ \sesskey\ <session key>\x\final\

8.4.2 GPI Profile Module
8.4.2.1 Create New Profile

Create a new profile with nick name.

Client request:

\newprofile\ \sesskey\ <session key>\nick\ <nick name>\id\ <operation
id>\final\

8.4.2.2 Replace Existed Profile

Replace nick name in a profile with a new nick name.

Client request:

\newprofile\ \sesskey\ <session key>\nick\ <old nick name>\replace\1
\oldnick\ <nick name>\id\<operation id>\final\

8.4.2.3 Delete Profile

Client request:

\delprofile\ \sesskey\ <session key>\id\<operation id>\final\

Server respomnse:

\dpr\final\

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 35

oy Research on GameSpy protocol

8.4.3 GPI Unique Module
8.4.3.1 Register Unique Nick

This method will register a new unique nick. There are two request and
.4.10. The first one is only register unique nick, and the second one is register
unique nick with cd key.

Client request:

\registernick \sesskey\ <session key>\uniquenick\<unique nick>
\partnerid\ <partner id>\id\ <operation id>\final\

Code 8.4.10

\registernick\ \sesskey\ <session key>\uniquenick\<unique nick>
\cdkey\<cd key>\partnerid\ <partner id>\id\ <operation id>\final\

Server response:

\rn\final\

8.4.3.2 Register CD Key

Client request:

\registercdkey \sesskey\<session key>\cdkeyenc\<cd key enc
string>\id\ <operation id>\final\

Server respomnse:

Code 8.4.13

\rc\final\

8.4.4 GPI Peer Module
8.4.5 GPI Transfer Module

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 36

oo,

N Research on GameSpy protocol

Chapter 9

GameSpy Presence Search
Player

GPSP server provides search function for client.
Table @ are the GPSP IP and Ports that client/game connect to.

Client GPSP

Send client search request

Send search result E

Figure 9.1: GPSP diagram

9.1 Search Profile

Client request:

\search \sesskey\ <session key>\profileid\ <profile id>*
\namespaceid\ <namespace id>\partnerid\ <partner id>
\gamename\ <game name>\final\

Symbol x contains client detail, we list client detail as follows.

\nick\<nick name>\uniquenick\ <unique nick>\email\ <email>
\firstname\ <first name>\lastname\ <last name>\icquin\ <icq uin>
\skip\ <skip>

Powered by RetroSpy
Page 37 S et o et b @

N Research on GameSpy protocol

Server respomnse:

\bsr\ <profile 1>\bsr\<profile 2>\bsr\- - - \<profile n>
\bsrdone\ \more\ <number of rest profiles>\final\

The value in <profile i> is showing below .

<profileid>\nick\ <nick>\uniquenick\ <unique nick>
\namepaceid\ <namespace id>\firstname\ <first name>
\lastname\ <last name>\email\ <email>

9.1.1 Seach Profile With Unique Nick

Client request:

\searchunique\ \sesskey\ <session key>\profileid\ <profile id>
\uniquenick\ <unique nick>\namespaces\<namespace id 1,
namespace id 2, ..., namespace id n>\final\

Server response:

The response from server is the same as .

9.1.2 Search User Is Valid

Client request:

\valid\ \email\ <email>\partnerid\ <partner id>\final\

Server response:

Number 0 represents false, 1 represents true.

\vr\<valid code: 0 or 1>\final \

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 38

oy Research on GameSpy protocol

9.1.3 Search Nick
This method is used to search profile with nick name and email.

Client request:

\nicks\ \email\ <email>\passenc\ <encrypted password>
\namespaceid\ <namespace id>\partnerid\ <partner id>
\gamename\ <game name>\final\

Server response:

\nr\\nick\<data 1>\<data 2>\---\<data n> \ndone\final\

The content in <data i> shows below.

<nick name>\uniquenick \ <unique nick>

9.1.4 Search Player

Client request:

\pmatch\ \sesskey\ <session key>\profileid\ <profile id>
\productid\ <product id>\gamename\<game name>\final\

Server respomnse:

\psr\<data 1>\psr\<data 2>\---\psr\<data n>\psrdone\final\

The content in <data i> shows below.

<profile id>\status\ <status string>\nick\<nick name>
\statuscode\<status code>

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 39

N Research on GameSpy protocol

9.1.5 Search Check
This method is used to check whether user exist.

Client request:

\check\ \nick\ <nick name>\email\ <email>\partnerid\<partner id>
\passenc\<encrypted password>\gamename\<game name>\final\

Server respomnse:

The error code in shows in .

\cur\<check error code>\pid\<profile id>\final\

9.1.6 User Creation
This commmand is used to create a user in GameSpy.

Client request:

\newuser\email \ <email>\nick\< nick name>
\passwordenc\ <password enc>\productid\<product id>
\uniquenick\ <unique nick> \cdkeyenc\<cdkeyenc>
\partnerid\ <partnerid >\ gamename\ <gamename>\final\

Server respomnse:

The newuser error code shows in .

\nur\<newuser error code>\pid\<profile id>\final\

9.1.7 Search Others Buddy

Client request:

\others\ \sesskey\ <session key>\profileid\ <profile id>
\namespaceid\ <namespace id>\gamename\<game name>\final\

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 40

oy Research on GameSpy protocol

Server respomnse:

GPSP should try to find the information, if some account do not have unique
nick then do not add \uniquenick\<unique nick>\to response string.

\others\\o\<data 1>\o\<data 2>\---\<data n>\odone\final\

The content in <data i> is listed as follows.

<profile id>\nick\ <nick name>\uniquenick\<unique nick>
\first\ <first name>\last\ <last name>\email\ <email >

9.1.8 Search Others Buddy List

Client send request to GPSP asking for the buddy’s profiles with buddy profile
id.

Client request:

\otherslist\ \sesskey\ <session key>\profileid\ <profile id>
\numopids\ <number of recieved buddy profiles>

\opids\ <profile id 1>|<profile id 2>|- - - |[<profile id 3>
\namespaceid\ <namespace id>\gamename\<game name>\final\

Server respomnse:

\otherslist\ \o\<data 1>\o\<data 2>\- - - \<data n>\odone\final\

The content in <data 1> is listed as follows.

<profile id>\uniquenick\ <unique nick>

9.1.9 Search Suggest Unique

Client search suggest nick name on GPSP.

Client request:

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 41

N Research on GameSpy protocol

\uniquesearch\ \preferrednick\ <unique nick name>
\namespaceid\ <namespace id>\gamename\<game name>\final\

Server respomnse:

\us\<number of suggest nick>\nick\ <nick namel>
\nick\ <nick name2>\-- - \nick\<nick name n>\usdone\final\

9.1.10 Valid Email

Client request:

\valid\ \email\ <email account>\partnerid\ <partner id>
\gamename\ <game name>\final\

Server respomnse:

\vr\<valid value>\final\

Powered by RetroSpy g
Bringing deprecated games back to lfe

Page 42

Nl Research on GameSpy protocol

Part 1V

Transport

Powered by Retro$
yRetosey &

Page 43 S e o

Ny Research on GameSpy protocol

Part V

NAT Negotation

Powered by Retro$
Powered by Retrosey &

Page 44

85y 2,
aa ',
& %

"~ os

N Research on GameSpy protocol

Chapter 10

Introduction

The GameSpy NAT Negotiation SDK interacts with GameSpy’s NAT Negoti-
ation server to allow hosting of multiplayer games by users behind NAT and
firewall devices. Typically, a user behind a NAT or firewall device cannot host
multiplayer games because the device will block incoming connections from out-
side users. GameSpy’s NAT Negotiation technology allows two users, one or
both of whom are behind a NAT device, to open a clear UDP channel directly
between the users. GameSpy’s NAT Negotiation technology uses a method
known as "Port Guessing” to attempt to discern future port mapping informa-
tion for two users based on their connections to the NAT Negotiation server.
Once this mapping information is determined, the server exchanges the infor-
mation with the users, and they connect to each other directly (note: the term
“connect” in this document is understood to mean the establishment a clear,
two-way channel between the users, since UDP is in reality a connection-less
protocol).

Note that the NAT Negotiation SDK does not make any distinction between
the "client” who is connecting to a ”server” (or "host”), however this document
will use those terms for clarity, and because the other SDKs involved do make
that distinction.

The NAT Negotiation SDK itself is very simple - two users who want to be
connected to each other have a shared "cookie” value that the NAT Negotiation
server uses to match the users up.

The NAT Negotiation SDK has no limit to the number of users that can be
connected together, but each channel between two users must be independently
established.

Page 45 Powered by Retrosoy &

Research on GameSpy protocol

Page 46

:Client1 :NatNegl | | :NatNeg2 | | :NatNeg3

ErtPacket(NN1)

Init ACK (NN1) 'D

ErtPacket(NN1)

Tnit ACK(NN1) 'D

ErtPacket(NN3)

Init ACK(NN3) E

AddressMappingPacket(NN1)

TnitACK (NN1) 'D

<
AddressMappingPacket(INN1)

Init ACK(NN1) 'D
AddressMappingPacket(NN2)

Tnit ACK (NN2) E
AddressMappingPacket(INN3)

Init ACK (NN3) 'D

Figure 10.1: Single client nat detection sequence

:Client1 :NatNegl [| :NatNeg2 | | :NatNeg3

InitPacket(Port type = GP)

Tnit ACK () 'D

InitPacket(Port type = NN1)

TnitACK() 'D
InitPacket(Port type = NN2)

InitACK() E
InitPacket(Port type = NN3)

InitACK () 'D

Figure 10.2: Single client nat negotiation sequence

Powered by Retrospy §8

Bringing deprecated games back to life

Research on GameSpy protocol

:Client1 :NatNeg :Client2
InitPacket(ClientIndex=0)
TnitACK]
| ImitaCK U
InitPacket(ClientIndex=1)
u‘ TnitACK ()
ConnectPacket
ConnectPacket
L]
ConnectPingPacket
ConnectPingPacket
Figure 10.3: Nat negotiation sequence

Natify packet()
ERT response() U

7777777777777777 Gt server list()
NatNeg connect packet ()
0

Get server list response()

NatNeg cookie packet()

Nat negotiation()
Nat negotiation()

Tl _______>

Try connect()

Try connect()

Figure 10.4: NatNeg general sequence diagram

Powered by RetroSpy ‘
Bringing deprecated games back to lfe

Page 47

oo,

N Research on GameSpy protocol

Name IP Port
NATNEG | natnegl.gamespy.com | 27901 (udp)
NATNEG | natneg3.gamespy.com | 27901 (udp)
NATNEG | natneg2.gamespy.com | 27901 (udp)

Table 10.1: IP and Ports for NatNeg Servers

Nat Negotiation mechanism: Because the ip address and other environment
are changing from time to time, so when a clientl wants to connect to client2, he
dose not know any informations about client2, so he cannot connect to client2.
using natneg it can ask client2 information on gamespy nat server and connect
to client2.

Nat Negotiation SDK do the following things:

e Clients connect to GameSpy NatNeg server

o Clients send the heart beat data that contain all information about himself
to GameSpy NatNeg server

e GameSpy Nat server store clients information.
e when a client] is try to connect to other client2:

— client1 send request to GameSpy NatNeg server
— GameSpy NatNeg server send the information about client2 to client1

— client1 get the client2 information and connect.

10.1 NetNag Packet

Code 10.1.1

typedef struct _ NatNegPacket

{

unsigned char magic[NATNEG_MAGIC_LEN];
unsigned char version;

unsigned char packettype;

int cookie;

union

{

InitPacket Init;
ConnectPacket Connect;
ReportPacket Report;

} Packet;

} NatNegPacket;

Powered by RetroSpy
Page 48 S et o et b @

oo,

3 Research on GameSpy protocol

10.1.1 Magic Data
Every heart beat packet start with magic data.

Code 10.1.2

Magic Data: 0xFD 0xFC 0x1E 0x66 0x6A 0xB2

10.1.2 NatNeg Packet Type
Client’s heart beat contains NatNeg packet type which we list as follows.

Packet Description Value
type
Init Heart beat to let server know the existence of 0
the client(client to server)
ErtTest External reachable test (client to server) 2
Connect Directly send to another client try to connect 5
with each others (client to client)
Client already received the connect request
Connect Ack and tried to connect to the other client 6
(client to client)
Connect Test the latency between each other (client 7
ping to client)
BackupTest 8
Address Identify client’s IP address mapping relations 10
check (client to server)
rlj(?ltlgé Identify NAT type (client to server) 12
Report NAT negotiation result report (client to 13
server)
Table 10.2: NatNeg client request packet type
Packet type Description Value
InitAck Init packet acknowledgment 1
ErtAck External reach test acknowledgment 3
Backup Ack Backup packet acknowledgment 9
Address reply Address mapping relation reply 11
Report Ack Report packet acknowledgment 15

Table 10.3: NatNeg server response packet type

Page 49 Powered by Retrosoy &

% 2,

P
~ pos”

N Research on GameSpy protocol

10.1.3 Initial Packet

Code 10.1.3

typedef struct _ InitPacket
{

unsigned char porttype;
unsigned char clientindex;
unsigned char usegameport;
unsigned int localip;
unsigned short localport;
char[] gamename;

} InitPacket;

10.1.4 Report Packet

Code 10.1.4

#define REPORTPACKET SIZE BASEPACKET_SIZE + 61
typedef struct _ ReportPacket

{

unsigned char porttype;

unsigned char clientindex;

unsigned char negResult;

NatType natType;

NatMappingScheme natMappingScheme;

char gamename[50];

} ReportPacket;

10.1.5 Connect Packet

Code 10.1.5

#define CONNECTPACKET_SIZE BASEPACKET _SIZE + 8
typedef struct _ ConnectPacket

{

unsigned int remotelP;

unsigned short remotePort;

unsigned char gotyourdata;

unsigned char finished;

} ConnectPacket;

Powered by RetroSpy g
Bringing ‘sames back o lfe

Page 50

by
(88 2,

:’33
3 Research on GameSpy protocol

10.2 Nat Negotiation Process

Natify —> AddressCheck —> Init —> Connect —> ConnectPing —> Report

10.2.1 Nat Identification

When client start, it sends 3 different Natify packet (NN1,NN2 NN3)to NatNeg
server to discover it’s reach-ability.

ERT stands for external reach test, which detect network environment. check
your private ip and port whether equal to your public ip and port.

10.2.2 Address Check

Then client will send 4 address check packets to NatNeg server to discover net-
work mapping. Each packet contains cookie defined before which are {packet_ map]la,
packet__maplb, packet_map2, packet_map3}.

10.2.2.1 Initial NatNeg
Client request:

Client sends a initpacket which contains an extra information of gamename to
NatNeg server.

Server respomnse:

Server changes the packet type of received initpacket to InitAck then send back
this packet to sender.

Powered by RetroSpy #

Page 51 S et o et b

Ny Research on GameSpy protocol

Part VI

Peer to Peer
communication

Page 52 Powered by Retrosoy &

N Research on GameSpy protocol

Chapter 11

Peer to Query Report
Server

Client Query Report

Send state changed request

Update server state

<__

Figure 11.1: Peer to query report diagram

Powered by RetroSpy

Page 53 S et o et b 3

N Research on GameSpy protocol

Chapter 12

Peer to Server Browser

Server

Client Server Browser Query Report

Call peer module

L Z_ 21 Call server browser module
Search group list

Search groups list

Send groups list

Figure 12.1: Peer to server browser diagram

Page 54

Send groups list E

Powered by Retro$
Powered by Retrosey &

Ny Research on GameSpy protocol

Part VII

Patching & Tracking

P ed
Page 55 Powered by Retrosey &

Ny Research on GameSpy protocol

Part VIII

Query & Reporting

P ed
Page 56 Powered by Retrosey &

(008 2,

£ 3':
_w’}

Research on GameSpy protocol

Query Report server is responsible for server available check and dedicated
server information collection. Query Report server and Server Browser server
communicate with each other, these two servers generally called master server.

Name 1P Port
QR * master.gamespy.com | 27900 (Udp)

Table 12.1: IP and Ports for Query Report Server

Powered by RetroSpy #

Page 57 S et o et b

oo,

N Research on GameSpy protocol

Chapter 13

Avaliable Check

According to GameSpy SDK every game needs to check GameSpy back end
server before using multiplayer. The contents in client request are shown below.

Client QR

Available check()
Response() ﬂ

Figure 13.1: The sequence of available check

Client request:

PacketType:0x09
GameName:<game name>

The response of available check is fixed with first 6 bytes, last byte is the
status of the master server.

Status Description Value
- still waiting for a response from

GSIACWaiting the backend 1

GSIAC Available the‘game s backend services are 9
available

GSIACUnavailable the game’s backend services are 3
unavailable

GSTACTemporarilyUnavailable the EaIme s backen.d Services are 4
temporarily unavailable

Table 13.1: Available check server status

Powered by RetroSpy g

Page 58 S et o et b

N Research on GameSpy protocol

Server respomnse:

Oxfe, Oxfd, 0x09, 0x00, 0x00, 0x00, <server status >

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 59

&
N Research on GameSpy protocol

Chapter 14

Game Server Information
Report

Query Report server collecting information about the player, server, team.

14.1 General Information

Data type | Description

This is general information about the game in progress, for
example - the map that is being played, the type of game,
and any specific game settings that would be of interest to
players before they joined.

This is information about a specific player that is in the
current game, for example - the player’s name, their current
score, what team they are on, and the latency to the game
server.

This is information about a specific team in the current
game, for example - the name of the team and the team
score. If your game does not support team play you do not
need to report any team information.

Server data

Player data

Team data

Table 14.1: The report data type

The format of the data in report data is key value pair. GameSpy gives several
GameSpy defined keys that we list as follows and game can define their custom
key to report.

Powered by Retrospy §8

Page 60 S et o et b

Research on GameSpy protocol

Key Description
a descriptive host-defined string (can include spaces) that
hostname . . S ”
identifies the server (e.g. ”Joe’s Game!”)
gamever a version specifier (e.g. 1.23)
the port that the game networking is running on and that
hostport the client should connect to. If the game shares a port with
P the Query and Reporting 2 SDK, you do not need to specify
this.
mapname the map name (either filename or descriptive name)
sametype string which specifies the type of game, or the mod being
played.
gamevariant if the p.artic.ular game type has multiple variants, you can
report it using this key.
numplayers numeric string, number of players on the server
numteams numeric string, number of teams on the server
maxplayers numeric string, max number of players for this server
amemode string which specifies what is going on in the game at that
& time. see Table
teampla number which defines the type of teamplay in use, or 0 for
pay no teamplay. Values > 0 are up to the developer
. number of total kills or points before a level change or game
fraglimit
restart
... | number of total kills or points for a team before a level
teamfraglimit
change or game restart
T amount of total time before a level change or game restart
timelimit . .
occurs (generally in minutes)
. amount of time (in seconds) since the current level or game
timeelapsed
started
. amount of time before a round ends (for round based
roundtime
games)
amount of time (in seconds) that the current round has
roundelapsed .
been in progress
0 or not present if no password is required to join, 1 if
password password is required. Implementation of actual password
protection is up to the game developer’s network code.
(optional) If the server being hosted is part of a ”group
groupid room” then it needs to report which groupid it is part of
(as passed in on launch)
player a player name (may include spaces)
score numeric string that contains the score (kills/points) for a
- single player
skill a skill rating, if applicable, for a single player
0 the ping for a player (as measured between the player and
pig— the server)
team__ the team a player is on, either numeric or string
deaths__ number of deaths a player has had
i The profileID number for a player (if logged in with the
pic— P&M SDK)
team_ t the name for a team
score_t the score for a team
Powered by Retro$
Page 61 Table 14.2: Report data keys st 1 g

g Research on GameSpy protocol

Packet type Value
Query 0x00
Echo response | 0x05
Client Message | 0x06
Message ACK | 0x07
Keep alive 0x08

Table 14.4: Query report client packet

Packet type Value
Pre-query ip verify | 0x09
Challenge 0x01
Echo 0x02
AddError 0x04
Keep alive 0x08

Table 14.5: Query report server packet

Key Description

openwaiting | game has not yet started and players can join
closedwaiting | game has not yet started and players cannot join
closedplaying | game is in progress, no joining allowed

openplaying | game is in progress, players may still join

openstaging | Use to report that the game is in staging mode (should
/ closedstag- | generally not be used directly - the Peer SDK handles this
ing automatically).

exiting server is shutting down

Table 14.3: Game mode detail

14.2 Pre-Query IP Verify Packet

e Server uses this packet to verify the IP of a client that connects to the
server.

e This is only done if the user enable IP challenge.

e Each new client has to verify them-self with a challenge.

QR Client

IP verify request(pre-query packet [])
IP verify response(query packet |

Figure 14.1: The sequence of IP verify

Powered by Retrospy §8

Page 62 S et o et b

oo,

N Research on GameSpy protocol

This packet has limit length 200 bytes.

Server respomnse:

|[Magic data(2 bytes)|Packet type (1 byte)|Instant key(4 bytes)|Server
challenge (int)|

14.3 Query Packet

After receiving the pre-query ip verify request from server, client will compute
the challenge response and send to server.

14.4 Heart Beat Packet

Heat beat packet is used to report the information about server, player and
team. We guess when QR server received a heartbeat packet, it will generate
an challenge and send to game server. after received challenge game server will
compute response and send to QR server to verify. If game server response is
valid then QR server will add this server to server list.

Custom keys are used to define custom data to report, for example if the
user is playing with a Windows or Macintosh.

There could be two types of custom keys: Player keys (they end with _):
Custom player information Team keys (they end with _t): Custom team (or
brigade) information Server keys (they don’t end with anything): Custom server
information

Client QR

Hear beat report()

Challenge
| Challen =0]l
Challenge response()

Echo packet() E
Echo packet()

Figure 14.2: The sequence of heart beat packet process

Client request:

Powered by RetroSpy
Page 63 S et o et b @

N Research on GameSpy protocol

|Instant key (4 bytes) | \0\O |Total number of server keys (1 byte) |
Server keys (unknown bytes) | \O\O | Total number of player keys (1
byte) | Player keys (unknown bytes) | \0\O |Total number of team keys
(1 byte) | Team key (unknown byte) |

14.5 Challenge Packet

When received the heart beat packet from client, Query Report server sends a
challenge packet to verify the authenticity of the report client to prevent some
illegal client.

Server respomnse:

| Magic data | Packet type | Instant key | Challenge (5 bytes) | User IP
(4 byte) | 4 bytes padding | User port (4 byte) |

14.6 Echo Packet

We guess echo packet is used to detect the ping between server and Query
Report server.

14.7 AddError Packet

This packet means address error, when query report server find client ip is not
valid, server will send this packet to client.

Powered by RetroSpy g
Bringing

‘games back to life

Page 64

& Research on GameSpy protocol

Chapter 15

The Process of CD key or
Nat Negotiation
authentication with Query
Report

Client QR CD-Key || NatNeg

Authentication

Forward authentication request

—

response

Forward authentication request

Response M

Response

Figure 15.1: The diagram of CD key or NatNeg server authentication with query
report

Powered by RetroSpy

Page 65 S et o et b 3

Ny Research on GameSpy protocol

Part IX

Server Browser

Powered by Retrospy §8
L 4

Page 66 S et o et b

Research on GameSpy protocol

Chapter 16

Overview

The GameSpy Server Browsing SDK is a portable LAN and Internet server

browser

engine. It allows developers to quickly and easily add a list-based

matchmaking interface to the game, with powerful features such as server-side
filtering, sorting, country-filtering, and ping (latency) measurement.

Client Server Browser

Page 67

B Server list request R
Has keys response E
777777777 Servers full rule response
Server rules request R
Has full rules response E
~ Send message request(ask for new server)
Push server message E
777777777777 Map loop request
Map loop message E
~ Player search request .
Player search message E
77777777777 Keep alive message
Keep alive reply g
Delete server

Figure 16.1: Total process of server browser server

Powered by Retrospy §8

Bringing deprecated games back to life

oo,

oy Research on GameSpy protocol

Chapter 17

Server List Retrieve

When a client want to see how many servers are online for playing it will do the
following.

Client Server Browser Query Report

Server list retrieve request

».
Ld

Searching online game server
».

>
Online server info D

Server list response

Note: The port in request and response should be check if it is little Indian,
and according to the result we should do byte reverse on port.
NTS string means Null Terminated String which ends with \0.

Client request:

Code 17.0.1

Total length of the request (2 bytes)
Protocol version (1 byte)

List protocol version (1 byte)

Encoding version (1 byte)

Game version (4 bytes)

Game name for development(i bytes)
Game name for real application(i bytes)
Challenge (8 bytes)
Server filter(i bytes)
Key field list(i bytes
Query option (4byte
Source IP (4 bytes) [optional]
Max servers (4 bytes) [optional]

)
)

Powered by RetroSpy

Page 68 v dercted s bt $

g Research on GameSpy protocol

After query option there could be more bytes which is listed as follows. If there
has alternate source ip option the following should be added after query option.
If there has limit result count option the following should be added after query
option.

Name Value
SERVER_LIST REQUEST 0
SERVER_INFO_REQUEST
SEND_MESSAGE_REQUEST
KEEPALIVE REPLY
MAPLOOP_REQUEST
PLAYERSEARCH_ REQUEST

Y = W N+~

Table 17.1: Server browser request

Name Value
PUSH_KEYS MESSAGE 1
PUSH_SERVER_MESSAGE
KEEPALIVE_MESSAGE
DELETE SERVER MESSAGE
MAPLOOP__MESSAGE
PLAYERSEARCH MESSAGE

O U | W N

Table 17.2: Server browser response

The list protocol version=1 and Encoding version=3 in code . We
do not know if there is another protocol version exist only by looking at the
GameSpy SDK. Server filter can select the server according to condition client
send to server browser. Filed list contains the keys that client need such as
game name, game type, map name etc.

Update option name Description Value
SEND_FIELDS_FOR_ALL Unknown 1
Only sends servers info do not

NO_SERVER_LIST 2
send keys values etc.
PUSH UPDATES Updates s.erver information in 4
group list (used by peer)
ALTERNATE_SOURCE_IP 8
SEND GROUPS Sends groups information (used 39
by peer)

NO_LIST CACHE Unknown 64
LIMIT RESULT COUNT Sends servers with a limit number 128

Table 17.3: Server browser server list update options

Server response:

Powered by Retrospy §8
Y

Page 69 S et o et b

3920,

"~ hos

N Research on GameSpy protocol

Code 17.0.2

Random byte (1 byte) A 0xEC

Response Message Length A xEA (1 byte)
Server Challenge (i bytes)

Client’s public ip (4 bytes)

Standard query port (2 bytes)

Number of keys (1 byte)
Keys list — [L7.

Unique values list — m
Servers info list — [17.3
AdHoc data — m

17.1 Keys List

The key list in above contains all keys that client required for. Each key is
separate by 0x00 and the first byte of each key is the key type. There are 3
types we listed as follow.

Key type | Value
Byte 0
Short 1
String 2

Table 17.4: The key type enumerator

Key-1 type (1 byte), Key-1 name (i bytes)
Key-2 type (1 byte), Key-2 name (i bytes)

Key-n type (1 byte), Key-n name (i bytes)

17.2 Unique Values List

There are 2 ways to parse the value:

e Popular value: presents all string value inside unique value list, gives
indexes in servers info list.

e Null terminate string: presents all string value inside server info list, sets
the unique value number to O.

Each unique value is separate by 0x00.

Powered by RetroSpy
Page 70 S et o et b #

% 2,

P
s

g Research on GameSpy protocol

Code 17.2.1

Unique valuel (i bytes)
Unique value2 (i bytes)

Unique value3 (i bytes)

17.3 Servers Info List

Servers info list contains multiple information of servers, each server is separated
by server ﬂags, final server should end with OxOOFFFFFFFF.

Code 17.3.1

Server flag (1 byte)

Server public ip (4 bytes)
Private port (4 bytes) [optional]
Private IP (4 bytes) [optional]
ICMP IP (4 bytes) [optional]
String index or NTS string

If you use popular value to parse values there should be string index which
starts with 0. Each index represents the value index.

0f1[2]---|n

If you use NTS string you should parse value in this way:

0xFF | value | 0x00

The game server flag in is listed as follows.

Flag name Value
UNSOLICITED_UDP_FLAG 1
PRIVATE_IP_FLAG 2
CONNECT_NEGOTIATE_FLAG 4
ICMP_IP_FLAG 8
NONSTANDARD_PORT_FLAG 16
NONSTANDARD_ PRIVATE_PORT_FLAG 32
HAS_KEYS_FLAG 64
HAS FULL_RULES FLAG 128

Table 17.5: Server flags in servers info list

Powered by RetroSpy g
Bringing ‘sames back o lfe

Page 71

oy Research on GameSpy protocol

17.4 AdHoc Data

AdHoc data is used to help peer module setup game service.

If game want to use this function, client should require servers list @ then the
crypt header will be initialized which can be used to encrypt further communi-
cation.

AdHoc data contains the following types of command.

17.4.1 Push Keys List

Server response:

Number of keys (1 byte)
Keys list with key type (i bytes) [NTS string]

17.4.2 Push Server

Search a server’s keys and full rules from server browser.

Server response:

Server flag (1 byte)

Server public IP (4 bytes)
Server public port (2 bytes)

17.4.3 Keep Alive
17.4.4 Delete Server

Delete a specific server in servers list.

Server respomnse:

Server public IP (4 bytes)
Server public port (2 bytes)

17.4.5 Map Loop
Gets a servers map information.

Client request:

Powered by RetroSpy g
Bringing

‘games back to life

Page 72

N Research on GameSpy protocol

Length of request (2 bytes)
MAPLOOP_REQUEST (1byte)
Server public IP (4 bytes)
Server public port (2 bytes)

Server response:

Code 17.4.5

Server public IP (4 bytes)

Server public port (2 bytes)

Map change time (4 bytes)
Number of maps (1 byte)

Map names (i bytes) [NTS string]

17.4.6 Player Search

Search a specific player information.

Client request:

Total request length should less than 256 bytes.
Code 17.4.6

Length of request (2 bytes)
PLAYERSEARCH REQUEST (1 byte)
Search options (4 bytes)

Max results (4 bytes)

Player name (i bytes)

Server respomnse:

Player names are NTS string.

Is final flag (1 byte)

Result count (1 byte)

Player names (i bytes)

Server IP (4 bytes)

Server ports (2 bytes)

Last record UTC time (4bytes)
Game name (i bytes)

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 73

N Research on GameSpy protocol

Chapter 18

Server Info

Retrieves server rules for a specific server.

Client request:

Code 18.0.1

Length of request message (2 bytes)
SERVER_INFO_REQUEST (1 byte)
Public IP of specific server (4 bytes)
Public port of specific server (2 bytes)

Server respomnse:

_

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 74

Ny Research on GameSpy protocol

Part X

SAKE Persistent Storage

Powered by Retro$
yRetosey &

Page 75 v et s e

Ny Research on GameSpy protocol

Part XI

ATLAS Competition

Powered by Retro$
yRetosey &

Page 76 v et s e

Nl Research on GameSpy protocol

Part XII

Voice Chat

Powered by Retro$
yRetosey &

Page 77 S e o

Ny Research on GameSpy protocol

Part XIII

Web Authentication

Powered by Retro$
yRetosey &

Page 78 v et s e

Ny Research on GameSpy protocol

Part XIV

GameSpy Status &
Tracking

Powered by Retro$
yRewosey &

Page 79 v et s e

359 2,
",
& 3

"~ os

N Research on GameSpy protocol

Chapter 19

General Introduction

19.1 Note

Game uses GSTATS to store its data only using email and passwords login
method in GPCM. So we do not need to consider namespaceid, we only need to
find profileid.

19.2 Working Process

1. On startup, the host connects to tracking server, is authenticated, and is
assigned a unique connection ID. If disk logging is enabled (see below) and
there are logged games, they are sent to the tracking server.

2. When the actual game starts, the host sends a new game notification to
the tracking server and creates internal structures for managing the game
information.

3. During the game the host collects information into buckets (or developer’s
own data structures) and sends out snapshots at regular intervals (in case
the host is reset before the game finishes)

4. (If player authentication is used) As players connect, the host sends out a
challenge to the client, which formats a response based on its password or
CD Key. This response is sent back to the host and stored as part of the
snapshot.

5. When the game is complete, a final snapshot is sent to the tracking server.

6. A new game can be started immediately over the same connection (mul-
tiple simultaneous games over the same tracking server connection are
supported as well).

7. The tracking server post-processes the data to extract some standard in-
formation and verify the authentication of the players. Disk logged or
unusual games are marked for inspection.

Powered by RetroSpy #

Page 80 S et o et b

oo,

oy Research on GameSpy protocol

19.3 Message Encryption

The GameSpy Stats & Tracking (GSTATS) SDK provides a simple, secure way
to report the results and statistics of games to a central server. These results
can then be used to help facilitate online rankings, ladders, and tournaments.
Tracking is done in a very abstract manner than can be applied to any type of
multiplayer game.

The communication between client and GSTATS server is encrypted under an
simple XOR method. After encrypted the message look like .

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\ﬁnal\

19.4 Client Command

Command Description
auth [20.1] Authentication request
Sends a snapshot of information about the current
updgame
game.
authp Authenticates player
getpd Gets persist data values modified
getpid Ge sprofile id
newgame Creates a new game for logging and registers it
with the stats server.

Table 19.1: GSTATS client request command

19.5 Server IP and Port

Name 1P Port
GSTATS | gamestats.gamespy.com | 29920 (tcp)

Table 19.2: IP and Ports for GameSpy status and tracking

Powered by RetroSpy
Page 81 S et o et b @

oo,

N Research on GameSpy protocol

Chapter 20

Protocol Detail

20.1 Authentication

Client GSTATS
Connect _
Send challenge E
Send challenge response
Accept /reject E

Figure 20.1: GSTATS authentication diagram

Server challenge:

\challenge\ <challenge string>\final\

Client request:

\auth\ \gamename\ <game name>\response\<response string>
\port\<game port>\id\ <operation id>\final\

The response string i is computed using the secrete key E of the client.

Server respomnse:

Powered by RetroSpy
Page 82 S et o et b #

3920,

"~ hos

oy Research on GameSpy protocol

\sesskey\ <session key>\final\

Session key should be Uint number.

when game wants to use the connect to GSTATS server, server will send
an message to game which contains the challenge, the total length of mes-
sage must bigger than 38bytes, and the challenge must bigger than 20bytes.
when game received the challenge it will compute a response, the response is
formed as follows. response = CRC32(<server challenge>,<length of server
challenge>)||<game secret key> then game will compute the MD5 hash as
MDb5value = MD5(<response>,<length of response>) then encoded with Enc-
type3 then construct the challenge-response message as \auth\\gamename\ <
gamename > \response\ < M Dbvalue > \port\ < port > \id\ < id >

session key length (unknown) connction id = transfer ascii of sessionkey to
integer

the initialization phase is finished. server challenge message length (bigger
than 38-byte) server challenge length (bigger than 20-byte) \ final\ is not en-
crypted using XOR Enctypel at the end of the challenge that sends by the
server.

20.2 Authenticate Player

20.2.1 Authenticate Player With Partner Information

Client request:

\authp) \authtoken\ <authtoken string>
\resp\response\ <response string>\lid\<local id>\final\

Server response:

Server response is the same as .

20.2.2 Authenticate Player With Presence Connection Man-
ager

Client request:

\authp\ \pid\ <profile id>\resp\ <response string>\lid\ <local
id>\final\

Server response:

Server response is the same as .

Powered by RetroSpy

Page 83 v dercted s bt #

oy Research on GameSpy protocol

20.2.3 Authenticate Player With CD Key Hash

Client request:

\authp\ \nick\ <nick name>\keyhash\<cd key hash>\resp\<response
string>\lid\ <local id>\final\

Server respomnse:

Server response is the same as .

The challenge response string here is calculated from password and the con-
nection id. xor challenge base string will be 0x38F371E6(decimal: 955478502)

Code 20.2.4

int temp = connid xor 0x38F371E6
string challenge;

string result;

for(int i=0; i<challenge.Lenth; i++)
{

result+=(i + 17 + challengeli]);

}

the calculation for resopnse string is connid xor 0x38F371E6

Game name | Secret key
Crysis2 8TTq4M

Table 20.1: Player authenticate response string

Server respomnse:

\pauthr\ <profile id>\lid\<local id>\final\

20.3 Get Profileid

Client can get profile id by searching his cd-key hash in GSTATS server.

Client request:

\getpid\ \nick\ <nick name>\keyhash\<cd key hash>\lid\<local id>
\final\

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 84

N Research on GameSpy protocol

Enum name Description

pd_private_ro | Readable only by the authenticated client it belongs
to, can only by set on the server.

pd_private_rw | Readable only by the authenticated client it belongs
to, set by the authenticated client it belongs to.
pd__public_ro Readable by any client, can only be set on the server.
pd_public_rw | Readable by any client, set by the authenicated client
is belongs to.

Table 20.2: Persist storage enumerator

Server response:

\getpidr\ <profile id>\lid\ <local id>\final\

20.4 Get Player Data

Client request:

\getpd\ \pid\ <profile id>\ptype\ <persist storage type>\dindex\<data
index>\keys\final\

Server response:

\getpdr\<profile id>\lid\<local id>\mod\<?>\length\<? length>
\data\<player data>\final\

20.5 New Game

Creates a new game for logging and registers it with the stats server. Creates
all the game structures, including buckets if needed.

Client request:

\newgame\ \connid\ <connection id>\sesskey\ <session key>\final\

Powered by RetroSpy g
Bringing

‘games back to life

Page 85

N Research on GameSpy protocol

Server respomnse:

_

20.6 Set Persist Data Helper

Client request:

\setpd\ \pid\ <profile id>\ptype\ <persist storage type> \dindex\<data
index>\kv\<key value flag>\lid\ <local id>\length\<size of game de-
fined data>\final\

Server respomnse:

\setpdr\<success or fail>\lid\<local id>\pid\<profile id>
\mod\ <modified time>\final\

20.7 Update Game Snapshot

Client request:

Old version:

\updgame) \sesskey\ <session key>\done\<final flag>
\gamedata\<game data>\final\

New version:

\updgame) \sesskey\ <session key>\connid\ <connection id>
\done\ <final flag>\gamedata\<game data>\final\

Server respomnse:

Server only records the data.

Powered by RetroSpy g
Bringing deprecated

‘games back to life

Page 86

3 Research on GameSpy protocol

Chapter 21

GameSpy Persist Storage

21.1 Introduction

If you store your data in keyelimited pairs, GetPersistDataValues will allow you
to easily retrieve a subset of the stored data. To retrieve the entire data set, use
GetPersistData. The data will be returned as a null-terminated string, unless
no data is available (in which case len will be 0 in the callback).

21.2 Parameter

e localid: Your game-specific reference number for this player, returned in
the callback to allow you to identify which player it is referring to.

o profileid: The profileid of the player whose data you are looking up. Re-
turned by gpIDFromProfile() in the Presence & Messaging SDK, or using
GetProfileIDFromCD

e type: The type of persistent data you are looking up

e index: Each profile can have multiple persistent data records associated
with them. Usually you just want to use index 0.

o modifiedsince: A time value to limit the request for data. Data will only
be returned if it has been modified since the time provided. If data has
not been modified since that time, the callback will be called with a suc-
cess value that indicates it is unmodified. Note: modification time is
tracked for the given profileid/index, not on a per-persisttype or per-
key basis keys: A ”\” delimited list of the keys you want returned (for
example: ”\clan\color\homepage\birthday”) PersDataCallbackFn: Call-
back that will be called with the data when it is returned instance: Pointer
that will be passed to the callback function (for your use)

Powered by RetroSpy #

Page 87 S et o et b

Ny Research on GameSpy protocol

Part XV

GameSpy Chat Server

Powered by Retro$
yRetosey &

Page 88 v et s e

N Research on GameSpy protocol

Chapter 22

Introduction

GameSpy Chat server is similar to IRC chat server, but support many extra
commands. We use bracket <> to represent the data, in real protocol there is
no bracket around each character field.

For example the following codes shows a welcome message.

:www.retrospy.cc 001 spyguy :”Welcome to RetroSpy”.

The client request formatted as follows:

:<prefix> <middle> <command> <command params> :<tailing>

\r\n

22.1 Prefix Format

:<prefix> contains information as follows, when user is logged in the prefix will
have user’s information and server address. Before user logged in there will be
only server address. Prefix using to indicate the message source.

:<nick name>!<user name>@<server address>
or
:<server address>

22.2 Middle Format

In original IRC protocol, <middle> is used to represent the <command> and
<command parameters>, however in GameSpy chat protocol they comprehend
it a parameter before <command>, which cause the handler of sdk some time

Powered by RetroSpy
Page 89 S et o et b #

oo,

N Research on GameSpy protocol

skip the first parameter. The partial source code of ciRplGetCKeyHandler()
we list as follows.

channel = message->params|[1];
nick = message->params|[2];
cookie = message->params[3];
flags = message->params[4];

22.3 Command Format

GameSpy chat protocol contains two types of command, request is character
command, response has both types of command.

¢« Enumerate command

¢ Character command

22.3.1 Enumerate Command

The format of enumerate commands are present as three digit numbers XXX.
The commands which used by GameSpy chat server are list as Table .

Powered by RetroSpy
Page 90 S et o et b #

oo,

N Research on GameSpy protocol

Name Value | Description

RPL_WELCOME ”001” | Welcome reply

RPL__USRIP 7302”7 | Get user’s public ip reply

RPL_WHOISUSER ?311” | Search for user information
reply

RPL ENDOFWHOIS 7318”7 End of search user informa-
tion reply

RPL WHOISCHANNELS 73197 Search channel information
reply

RPL_LISTSTART 73217 | Start list channels reply

RPL_LIST 73227 List channel information re-
ply

RPL_LISTEND 73237 End of list channel informa-
tion reply

RPL_CHANNELMODEIS 7324” | Get channel modes reply

RPL_NOTOPIC 7331”7 | There is no topic for this
channel reply

RPL_TOPIC ”332” | Get channel topic reply

RPL_WHOREPLY 7352”7 | Search users reply

RPL_ENDOFWHO ”315” | The end of Search users reply

RPL_NAMEREPLY 73537 | Get users in channel reply

RPL ENDOFNAMES 7366” End of list users in this chan-
nel reply

RPL_BANLIST ”367” | Get ban list reply

RPL_ENDOFBANLIST ”368” | End of ban list reply

RPL_GETKEY 7700”7 | Get user value by specific
keys reply

RPL_ENDGETKEY 7701” | End of GETKEY reply

RPL GETCKEY 7702” | Get channel or user’s values
reply

RPL_ENDGETCKEY 7703”7 | End of GETCKEY reply

RPL _GETCHANKEY 77047 Get channel values reply

RPL_SECUREKEY 77057 | Use gamespy encryption to
communicate

RPL CDKEY 77067 Authenticate with cdkey re-
ply

RPL_LOGIN 77077 | Login as a GameSpy user re-
ply

RPL_GETUDPRELAY 7712”7

Table 22.2: The enumerate reply command

The 3 digits number will convert to ASCII code and send to client.

22.3.2 Character Command

The other command is character command, the format of these commands are
using words to represent command.

Powered by RetroSpy
Page 91 S et o et b @

:""".“:""i
s Research on GameSpy protocol
Name Value | Description ‘
Name Value Description
Private message response "PRIVMSG”
Notice message response "NOTICE”
Under the table message re- | "UTM”
sponse
Above the table message re- | "ATM”
sponse
Ping message response "PING”
Nick message response "NICK”
Join channel response ?JOIN”
Leave channel response "PART”
Kick player response "KICK”
Quit response ?QUIT”
Kill response KILL”
Get or set topic response "TOPIC”
Get or set mode response "MODE”
Error message "ERROR”
Invite Response "INVITE”

Table 22.3: Character reply commands

22.4 Command Parameters

Command parameters are the extra information that each request contains.
Such as nick name, user name, channel name etc.

22.5 Tailing Format

The start of <tailing> should be :, the space inside <tailing> is ignored by
server and client, which means you can send <:hello my friend> to others.
usually <tailing> is used to carry some messages.

Powered by Retrospy §8

Page 92 S et o et b

N Research on GameSpy protocol

Appendix A

Login Proof Challenge
Generation Algorithm

Powered by Retro$
yRewosey &

Page 93 v et s e

N Research on GameSpy protocol

Appendix B

Gstats Initial Encryption

Powered by Retro$
yRewosey &

Page 94 v et s e

N Research on GameSpy protocol

Appendix C

CDKey Server Initial
Encryption

Powered by Retro$
yRewosey &

Page 95 v et s e

Research on GameSpy protocol

Appendix D

GameSpy Secret Key

If a game is using GameSpy service, GameSpy will issue a secret key to the
game, which length is at 5-byte. The secret key that GameSpy issued is not
the traditional secret key in public-key cryptography, actually it is an key for

simple symmetric encryption.

Game name

Secret key

Crysis2

8TTq4M

Table D.1: Secret key example

Page 96

Powered by Retrospy §8

Bringing deprecated games back to life

	I Introduction
	History of GameSpy
	Related Works

	II General Information
	SDK Module
	GameSpy Back-end Servers
	Access Sequence of The Client
	Basic Description of Protocol
	String Pattern

	III GameSpy Presence & Messaging
	Common Information
	Server IP and Ports

	GameSpy Presence Connection Manager
	Request Command of GameSpy Presence Connection Manager
	GPI Connect Module
	Login
	SDK Revision

	GPI Buddy Module
	Buddy Message
	Message
	UTM
	Request
	Auth
	Revoke
	Status
	Invite
	PING
	PONG

	Buddy Status Info
	Buddy List
	Block List
	Add Buddy
	Delete Buddy
	Add Block

	GPI Info Module
	Profile
	Get Profile Information
	Update Profile Information
	Update User Information

	GPI Profile Module
	Create New Profile
	Replace Existed Profile
	Delete Profile

	GPI Unique Module
	Register Unique Nick
	Register CD Key

	GPI Peer Module
	GPI Transfer Module

	GameSpy Presence Search Player
	Search Profile
	Seach Profile With Unique Nick
	Search User Is Valid
	Search Nick
	Search Player
	Search Check
	User Creation
	Search Others Buddy
	Search Others Buddy List
	Search Suggest Unique
	Valid Email

	IV Transport
	V NAT Negotation
	Introduction
	NetNag Packet
	Magic Data
	NatNeg Packet Type
	Initial Packet
	Report Packet
	Connect Packet

	Nat Negotiation Process
	Nat Identification
	Address Check
	Initial NatNeg

	VI Peer to Peer communication
	Peer to Query Report Server
	Peer to Server Browser Server

	VII Patching & Tracking
	VIII Query & Reporting
	Avaliable Check
	Game Server Information Report
	General Information
	Pre-Query IP Verify Packet
	Query Packet
	Heart Beat Packet
	Challenge Packet
	Echo Packet
	AddError Packet

	The Process of CD key or Nat Negotiation authentication with Query Report

	IX Server Browser
	Overview
	Server List Retrieve
	Keys List
	Unique Values List
	Servers Info List
	AdHoc Data
	Push Keys List
	Push Server
	Keep Alive
	Delete Server
	Map Loop
	Player Search

	Server Info

	X SAKE Persistent Storage
	XI ATLAS Competition
	XII Voice Chat
	XIII Web Authentication
	XIV GameSpy Status & Tracking
	General Introduction
	Note
	Working Process
	Message Encryption
	Client Command
	Server IP and Port

	Protocol Detail
	Authentication
	Authenticate Player
	Authenticate Player With Partner Information
	Authenticate Player With Presence Connection Manager
	Authenticate Player With CD Key Hash

	Get Profileid
	Get Player Data
	New Game
	Set Persist Data Helper
	Update Game Snapshot

	GameSpy Persist Storage
	Introduction
	Parameter

	XV GameSpy Chat Server
	Introduction
	Prefix Format
	Middle Format
	Command Format
	Enumerate Command
	Character Command

	Command Parameters
	Tailing Format

	Login Proof Challenge Generation Algorithm
	Gstats Initial Encryption
	CDKey Server Initial Encryption
	GameSpy Secret Key

